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Fast reconnection of weak magnetic fields
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Fast magnetic reconnection refers to annihilation or topological rearrangement of magnetic fields on

a timescale that is independent (or nearly independent) of the plasma resistivity. The resistivity of
astrophysical plasmas is so low that reconnection is of little practical interest unless it is fast. Yet,

the theory of fast magnetic reconnection is on uncertain ground, as models must avoid the tendency
of magnetic fields to pile up at the reconnection layer, slowing down the flow. In this paper it is
shown that these problems can be avoided to some extent if the flow is three dimensional. On the

other hand, it is shown that in the limited but important case of incompressible stagnation point

flows, every flow will amplify most magnetic fields. Although examples of fast magnetic
reconnection abound, a weak, disordered magnetic field embedded in stagnation point flow will in

general be amplified, and should eventually modify the flow. These results support recent arguments
against the operation of turbulent resistivity in highly conducting fluids. © 1998 American
Institute of Physics. [S 1070-664X(98)04801-0]

Z//.S

/;,_/7C O

", ./;, s-'..

I. INTRODUCTION

Magnetic fields in astrophysical systems are almost com-

pletely frozen to the plasma, because the magnetic Reynolds

number Rm, the ratio of the Ohmic decay time to the dy-
namical time, is extremely large; of order 10_5 to 102_ for
interstellar fields and 108 to 10 j° for stellar fields, for ex-

ample. Any departure from frozen in behavior--i.e, any re-
connection of the magnetic fieldlines--is a finite conductiv-

ity effect. If magnetic reconnection occurs on a timescale

which is independent of R,,,, the reconnection is said to be

fast. Petschek's model _ at its maximum rate is almost fast,

depending only logarithmically on R,,,. The Sweet and
Parker time independent model 2"3is slow, with the reconnec-

tion rate scaling as R,_ i/2. Linear tearing modes 4 grow at a
rate scaled by R_ 3/5 and are also slow.

Given the large value of R,,, in many astrophysical situ-

ations, reconnection can be of little practical importance un-

less it is fast. Therefore, the problem of developing models
for fast magnetic reconnection is of considerable interest.

Clark 5 and later Moffatt 6 developed an analytical model

for almost fast magnetic reconnection based on two dimen-

sional (2D), incompressible flow near a hyperbolic stagna-

tion point. I refer to this model as 2DHS throughout the text.
The magnetic field is initially amplified by induction, and

then decays resistively at a superexponential rate. Strauss 7
showed that this simple model describes a numerical simu-

lation of magnetic reconnection in a current sheet.
The 2DHS model is kinematic, in the sense that the flow

field is prescribed. During the transient amplification phase,
3iz

magnetic forces can become very large, scaling as R,,, , and

one concludes that the reconnection is quenched or greatly
modified by these large forces, even though they act for only

a short time. The dynamical, steady state reconnection model

of Craig and Henton s shows magnetic flux pileup and large

pressure gradients near the stagnation point of the flow--

which is also an X-point of the magnetic field--and might
represent the outcome of the 2DHS model if magnetic forces
were accounted for. See References 5, 9 and 10 for other

discussions of the role of large pressure gradients in sustain-
ing the flow in fieldline reconnection.

The 2DHS model exemplifies a generic difficulty of re-

connection theory: in order that resistive effects occur rap-

idly, the magnetic field must develop structure on small spa-
tial scales which are proportional to a positive power of the

plasma resistivity r/. These small spatial scales generally im-
ply large Lorentz forces, scaling as a negative power of r/.

But, fast reconnection requires that the plasma velocity re-
main independent of r/.

The difficulties associated with the 2DHS model can be

made to disappear in three dimensional flows. More gener-
ally, it turns out to be relatively easy to characterize the

action of any linear stagnation point flow on any magnetic

field, and to set forth conditions under which the fields decay
and Lorentz forces do not grow, so that if the kinematic

reconnection theory is self-consistent initially then it remains

so. This allows one to estimate, for example, the degree of
reconnection of a weak magnetic field in a turbulent fluid. It

may also be a useful preliminary step toward developing
fully dynamical models of reconnection, which apply when
the fields are strong.

In Sec. II of this paper I review the 2DHS model and

generalize it to three dimensions. In Sec. 1II I develop the
solution for arbitrary fields in arbitrary hyperbolic stagnation

point flows. In Sec. IV D I summarize the implications of

this work for astrophysical reconnection, and for the opera-
tion of turbulent resistivity, which is often invoked in astro-

physics.

II. THE 2D HYPERBOLIC STAGNATION POINT
MODEL AND EXTENSION TO THREE DIMENSIONS

Consider a magnetic field B= (B(y,t),O,O) embedded in

a bulk flow u with a hyperbolic stagnation point at the origin,

u=u'(x,-y,O). (i)
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Equation (1) should of course be regarded as a local repre-
sentation of a flow which is globally bounded. Assume the

medium has resistivity q and Ohmic diffusivity h.
=- qc2/4zr. The magnetic induction equation,

3B
- V×(v×B)+hV2B, (2)

:gt

reduces in this case to

3B OB 32B

- u ' y -_-fy+ U' B + h _y . (3)dt

Taking as the initial condition

B(y,0)=B0 sin koy. (4)

Eq. (3) has the solution

B(y,t)=Bo e"'r R_,_Ie2""-I) sin koe"'%, (5)

where the magnetic Reynolds number Rm=--(hkg/2u')- l is

roughly the ratio of the initial Ohmic decay time to the flow
time within one magnetic spatial period. (Although in steady

state problems it is standard procedure to define the dynami-
cal time from the advective term in the induction equation,

so that Rm is linear in the magnetic lengthscale, the definition

used here is natural in the present problem.) It is the depen-
dence on h, or r/, which is most important here. Equation (5)

describes a field which is initially amplified by compression

as it is swept toward the x axis, while the scale over which
the field reverses shrinks exponentially. Eventually Ohmic

processes dominate compression and the field begins a phase
of superexponential decay. The fieldstrength reaches its

maximum, Ornax, at time Imam,

t .... = 2--_-u' In(1 _-R,.) ;

!

1

R _ v2 _/2
/ R,.t

Bma_B° -T) s|n. m " koIT) y, (6)

where the approximation consists of assuming R,,-> 1. Thus,
the field is amplified by a factor of order RI_2 or 7/- i/2, and

the magnetic lengthscale decreases by the same factor. The

decay phase is so fast that the field falls to I/e of its initial
value in a time of order (2u') -I ln(Rm In R_2). In view of

the weak dependence of the decay time on Rm, this system is
a model of "almost fast" magnetic reconnection. However,

it is easy to show that the current density and Lorentz force

also peak before decaying, and that the time integrated Lor-

entz force F L is of order

b _21_312

f __O__,)"_____m (7)dtFL_ 4rru' "

The fluid will be slowed down if the time integrated Lorentz

force is greater than or equal to the initial momentum density
in the fluid, measured, say, at a distance k o i from the origin.
Therefore, the fluid is decelerated unless B0

< _,r(4zrp)(u '/ko)R_, 3/4, which means that the initial Alfv_n
3/4

Mach number of the flow must exceed R,, . Thus, this re-

connection model is self-consistent only for extremely weak

magnetic fields. It is difficult to imagine applying it in un-

modified form to the interstellar medium, where B is close to

equipartition with the turbulent gas velocity. Similar objec-
tions would arise if the model were applied to the convection
zones of stars; even more so in stellar coronae, which are

magnetically dominated.
These difficulties can be avoided in a three-dimensional

flow. Consider the velocity field,

u= u'( -x,-y, 2z). (8)

Fluid is swept in along the x and y axes and ejected along the

z axis, and the flow is incompressible (see Reference 11 for
a discussion of dynamically consistent flows of this type).

Again, assume the magnetic field points in the x direction

and depends only on y and t. The induction equation (2) is

_B 3B 02B
--._. ¢

at ,'y _-,, B+x0--_-. (9)

The solution which satisfies the initial condition (4) is

B n -.'t Rml(e2U't-1) t= t%e sin koe" ty. (10)

Equation (10) differs from Eq. (5) in that the magnetic field

is not compressed in the initial nonresistive phase; instead,
the field is weakened by ejection in the z direction even as its

spatial scale decreases. Once resistivity becomes important,

which happens at about the time tm_x given in Eq. (6), the
spatial scale has decreased to R,_ i/2 of its initial value, and

decay is superexponential. The current density is nearly flat
with time in the nonresistive phase, and the Lorentz force

decreases monotonically, so if Ft. is initially negligible it
remains so.

The results of this section suggest that one could system-

atically characterize magnetic reconnection near stagnation

points in three dimensional flows, and select the flows and
fields for which reconnection is fast and unaccompanied by

large increases in the Lorentz force. This is taken up in Sec.
IIl.

III. GENERAL STAGNATION POINT FLOW

The resistive induction equation cannot be solved ana-

lytically for general flows, even when the velocity is a linear
function of the coordinates. The solution to the nonresistive

induction equation can, however, be written down exactly,

and it is then easy to see whether the magnetic tield develops

progressively smaller scale structure over time, and how the
Lorentz force evolves during the ideal phase.

Much of this section depends on results from linear al-

gebra, and are given in any one of a number of books. The
author used the text by Curtis, _2 which includes material on

differential equations.
It is convenient to adopt a Lagrangian description of the

flow. Label points in the fluid by their initial positions x0,

and write their positions at subsequent times t>0 as x(x0,t).
One can then form the deformation matrix D at every point
and time, which has elements

3xi
Dij- . (1 1)

3xoj
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The volume element d3x changes with time according to

d3x = [O]d3xo, where [ol is the determinant of D. The in-

duction equation (2) with h =-0 can then be integrated to give

B(x,t) in terms of the initial field B0,

D. B0(x0(x,t))

BIx, t)= Iol (12_

Equation (12) shows that growth of the field is associated

with an increase of the deformation matrix with time, which

for incompressible or nearly incompressible flows is associ-

ated with shearing or stretching of volume elements. The

change in the magnetic lengthscale is also brought about by

shear, as reflected in the map of x back to x0. In general, this

map (or its inverse, the trajectory of a fluid particle) is diffi-

cult to construct, but it becomes simple near a stagnation

point, taken to be the origin of the coordinate system, at

which the Lagrangian equations of motion are

dx

dt =U'x, (13)

where U is a 3 × 3 matrix with constant, real coefficients.

The solution of Eq. (13) with the initial condition x(0) = x0 is

x(t)=etU" xo, (14)

where the matrix e tU is defined by its Taylor series,

n

e tU_ lim _ (tU)J
n_=J =o j! (15)

It is clear from Eqs. (11) and (14) that

D=e ru, (16)

and that the inverse of Eq. (14) is

Xo(X,t)=e-tU'x. (17)

Assume for the remainder of the paper that le":[-- 1 (incom-

pressible flow). Using this together with Eqs. (14) and (17),

Eq. (12) becomes

B(x,t) = e 'U. B0(e -tU. x). (18)

The matrix e tU is generally not easily computed as it stands.

However. by a theorem of linear algebra, the matrix U is

similar to the sum of a diagonal matrix M and a nilpotent

matrix N which commutes with M,

U=S(M+N)S -n, (19)

for some nonsingular matrix S. Because M and N commute,

this carries over to exponentiation,

etU= Se,IM +N_s- I. (20)

The elements of the diagonal matrix M are just the roots oti

of the minimal polynomial of U (the lowest degree polyno-

mial equation satisfied by U), with each root occurring ac-

cording to its multiplicity. It is readily shown that e tM is

diagonal, with element (etM)ii= e tMii. Computation of e tN is

also straightforward; since N is nilpotent, the Taylor series

given in Eq. (15) terminates at or before the N 3 term.

Returning to Eq. (18), written now in the form

B(x,t)=Set(M+N)s-I'B(Se-t(M+N)S-I.x), (21)

we can make the following observations. The matrix S is

independent of time and does not directly cause growth or

decay of the magnetic field or current. The factors e :=IN lead

at most to algebraic growth or decay of the field and current,

by virtue of the finite Taylor series which define these ma-

trices. Exponential growth or decay of the field and its

lengthscale comes about only through the action of the e"M

matrices, and the rates of growth/decay are easy to read off;

they correspond to the real parts of the roots a, i of the mini-

mal polynomial of the original velocity matrix U, which are

also eigenvalues v i of U.

There is a constraint on the o_i which arises from the

incompressibility of the flow. It follows from Eq. (20) that

[etMetN[ = letMl[etNI = 1. On the other hand,

le'MI = exp(t_ i nieq), (22)

where n i is the multiplicity of the ith root. Since [etNI is an

algebraic function of t, the real part of the sum in Eq. (22)
must be zero.

In order for the lengthscale of the field to shrink to the

resistive scale, at least one ce_ must have a negative real part.

The field grows because of the action of the cei with positive

real part. Because of the remark following Eq. (22), if there

is shrinking there must also he stretching, so magnetic fields

with arbitrary direction and coordinate dependence are am-

plified even as their lengthscale shrinks.

The velocity field given by Eq. (8) illustrates these con-

clusions. In this case, the U matrix is diagonal. The magnetic

field derivatives with respect to x and ), grow as e "'t. The x

and y components of B shrink by the same factor. The z

component of B grows, however, as e 2u't. The Lorentz force

is bounded with time only for fields in the x-y plane, so

only fields confined to the x-y plane can undergo fast, ki-
nematic reconnection.

A simple modification of the flow (8) leads to algebraic

growth of B. Consider the velocity field

u= u '( -x-y,-y, 2z). (23)

In this case, direct integration of the equations of motion (13)

yields

X=Xoe-U't_you,te-U't; y=yoe u't; Z=Zoe2U't,

(24)

while the matrix U is the direct sum of a diagonal matrix

with elements (- 1,- 1,2) and the nilpotent matrix N with

single nonzero element NI2 = - 1, which satisfies the equa-

tion N 2= 0. In this example, the U matrix has a doubly de-

generate eigenvalue - 1, and this corresponds to forcing of x

by y at its natural decay rate. This is the origin of the com-

bined exponential and algebraic deformation seen in Eq.

(24).

As an example of the action of this flow on a magnetic

field, let

B0(xo) =f(x0)(0,1,0). (25)

Using Eq. (12), the field at time t is seen to be

B(x,t)=e-"' tf((x + u 'yt)e"")(-u' t,l,0). (26)
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Equation (26) shows that the magnetic lengthscale shrinks

exponentially and the field decays at the same rate. The field-

lines are also rotated from the v to the ]c direction over time.

because of the shear in the llow.

Given any incompressible stagnation point flow of the

type considered here, is there always an initial magnetic field

which is not amplified by it'? This question is easily an-

swered in the nondegenerate case, in which all the eigenval-

ues of U are distinct. In this case, the fluid trajectories [which

are solutions of Eq. (13)] can be written in the form

x i( t ) = a ij( xo)eU )t, (27)

where the #j are eigenvalues of U, and the aij are linear

functions of x0. It is clear from eqs. (11) and (27) that the

elements of the deformation matrix are

(9¢1 ij t

Di k = -- , (28)
OXok e_'

where the partial derivatives are constants. Therefore, D can

be written as a sum of constant matrices D _i), each one mul-

tiplied by an exponential function of time,

D= _ D!J)e uJ. (29)
J

Suppose some #i has a positive real part; the condition that

an initial field B0 not grow with e u: is

D (i). B 0 = 0. (30)

That is, D Ci) must be singular, and B0 must be in the null

space of D _1.

In fact, the D _j_ are all singular. This follows from the

condition IDI= 1. Therefore, in a flow in which only one

eigenvalue has a positive real part, it is always possible to

find an initial field which is not amplified by the flow. If two

eigenvalues #i,/-zj have a positive real part, they will not

necessarily have overlapping null spaces, and so it may turn

out that all fields are amplified by the flow.

Finally, it is worth estimating the amplification of the

field and Lorentz force during the ideal phase, bearing in

mind that the estimate is based on rough arguments and that

there are many special cases. Let the eigenvalue with the

largest positive real part be #,,, .... and let Re(#m,x) be the

real part of #,,,x. Let I,.£min be the eigenvalue with the most

negative real part, and Re(txmi,,) be the real part itself. The

rate of reduction in lengthscale l for the field is dominated by

/.t,,i, , , so I_lo exp(Re(#,,i,,)t). The ideal phase ends at the

time t_ when the diffusive timescale becomes equal to the

flow timescale,

1
-I _3

hi 2(ti)_tft,,,,. : t'_ 2Re(Itmi,,)In(h/° _t:t"")" (31)

The magnetic field is amplified at the rate exp(Re(I.¢,,J)).

According to Eq. (31), the field amplitude at the end of the

ideal phase is

B _ Bo(hl o 2tfh,_,)Reiu ..... !/2Re(#"'n_. (32)

In the 2DHS flow given by Eq. (1), # ....... = 1, #m,, = -- I, SO

the amplification factor is proportional to h i/2. In fact,

since the rcal parts of the p, must sum to zero, the exponent

in eq. (321 must lie between - 1/4 and - I, so the field must

grow by at least a factor of h i:-* (r/ t/4) during the ideal

phase. Examples of similar scalings for a variety of dynami-

cally self-consistent 3D reconnection models are given in

Reference 13.

Similar arguments can be made for the growth of the

Lorentz force Ft, which scales as B2/I. Thus, at the end of

the ideal phase,

Ft_FLo(Mo2t:t,,,) t/2+n_lu ...... )/ReI_z.,in)" (33)

The amplification rate of the Lorentz force lies between h -

and h 5]2.

IV. SUMMARY AND DISCUSSION

In this paper we address the problem of time dependent,

fast magnetic reconnection in highly conducting fluids in the

kinematic regime, in which the fields are assumed to be so

weak that Lorentz forces can be ignored. Reconnection is

assumed to take place at a stagnation point, and to be essen-

tially a two stage process. In the first step resistivity can be

ignored, and advection of the field by the flow produces

structure in the field on very small scales. In the second

stage, magnetic gradients are large enough that resistivity is

important, and the field decays. The issue is whether the

buildup of large Lorentz forces (scaling as an inverse power

of the resistivity), which would vitiate the kinematic assump-

tion, can be avoided during the first stage. There are two

main results.

First, it is not difficult to find examples of flows and

fields in which reconnection takes place at a rate almost in-

dependent of the resistivity r/, and for which, if the kinematic

approximation is self-consistent initially, it remains so. The

example discussed in Sec. II is an extension of the 2DHS

model in which Lorentz forces scale as 7/ 3/2. The crucial

ingredient is a third component of flow, without which the

situation would be hopeless. It is argued in Sec. Ill that a

broad class of incompressible stagnation point flows allow

fast magnetic reconnection. These results are encouraging for

some astrophysical problems in which the field and flow ge-

ometry can be controlled, and the fields are weak, and also

provide some insight into the nature of almost fast magnetic

reconnection.

The second result is that if the initial magnetic field ori-

entation and coordinate dependence are arbitrary, the field

will generally be amplified by the flow. It is the fields which

are not amplified which must satisfy special conditions, such

as B0:-=0 for the flow given in Eq. (8). Since the length-

scales for the fields shrink as the fields themselves grow, the

Lorentz forces grow even faster than the fields. Without spe-

cial symmetries or other restrictions, the forces are amplified

by a factor scaling as 7/ q, where I_<q_<5/2. This result

implies that the problem of reconnection of a weak, disor-

dered magnetic field embedded in a turbulent, highly con-

ducting fluid cannot be solved self-consistently in the kine-

matic regime.

Although amplification of the field is generally undesir-

able in reconnection models for the reasons just described, it

is exactly the effect sought in models of hydromagnetic dy-
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namos. The dynamo properties of linear stagnation point

flows have been investigated by Zel'dovich et al.: 14 see also

Reference 15, by methods which overlap those used m this

paper. These papers demonstrate the growth of magnetic en-

ergy with time induced by stagnation point flow, including

randomly varying flow, but do not estimate the growth of

Lorentz forces.

It is worth bearing in mind that these results are obtained

only in the neighborhoods of stagnation points, not ['or glo-

bally bounded flows. This shortcoming is common to other

reconnection models, which attempt to account for global

effects through the choice of boundary conditions. ]6

It is often assumed that the effective resistivity of turbu-

lent fluids is much larger than the Coulomb value, because

action of the flow on the field produces small scale currents

which are rapidly dissipated. This is exactly the process stud-

ied in this paper, although only for local flow models. While

there can be no doubt that the field can be reconnected at a

rate that depends only logarithmically on the resistivity, in

general the fields are amplified and must eventually affect

the flow. Thus, the results of this paper do not support the

general concept of a large turbulent resistivity, but instead

are consistent with arguments made by others based on nu-

merical computation of global flows, Iv-I'_ or on analytical

calculations. 2°-22 Reference 19, which discusses amplifica-

tion of the field by a dynamo, shows that Lorentz forces

reduce the stretching rate of a flow; because of the incom-

pressibility condition, they must also reduce the shrinkage

rate.

In the reconnection models presented here, the field is

assumed to be initially weak, and the acceptability of the

models is judged by whether it remains so. These models

would be on shaky ground in systems such as stellar coronae

and the bulk of the interstellar medium, which have strong

fields and require dynamical reconnection theories. The

models would be better applied to systems such as stellar

interiors, accretion disks and the early universe, although

each of these systems has distinctive features arising from

other physical conditions.
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